बेसल समस्या
गणितीय नियतांक π पर लेख श्रृंखला का एक भाग |
गणितीय नियतांक π |
---|
उपयोग |
चकती का क्षेत्रफल • परिधि • अन्य सूत्रों में प्रयोग |
गुणधर्म |
अपरिमेयता • उत्कृष्टता |
परिमाण |
२२/७ से कम • सन्निकटन • स्मृतिकरण |
लोग |
आर्यभट • आर्किमिडिज़ • लियू हुई • जू चोंग्ज्ही • संगमग्राम के माधव • विलियम जोन्स • जॉन मेचिन • जॉन रिंच • लुडॉल्फ वान स्युलेन |
इतिहास |
कालक्रम • पुस्तकें |
संस्कृति में |
कानून • π दिवस |
सम्बंधित विषय |
वृत का वर्गफलीकरण • बेसल समस्या • फाइनमेन बिन्दु • π से सम्बंधित अन्य विषय |
बेसल समस्या संख्या सिद्धान्त से सम्बद्ध गणितीय विश्लेषण की समस्या है जो सर्वप्रथम पिएत्रो मंगोली ने १६४४ में दी और १७३४ में लियोनार्ड आयलर ने हल की।[1] यह सर्वप्रथम द सेंट पीटर्सबर्ग एकेडेमी ऑफ़ साइंसेज (रूसी: Петербургская Академия наук) में ५ दिसम्बर १७३५ को प्रकाशित हुई।[2]
बेसल समस्या प्राकृत संख्याओं के वर्ग के व्युत्क्रम के संकलन के बारे में है अर्थात अनन्त श्रेणी के योग का यथार्थ मान:
श्रेणी का लगभग मान 1.644934 A013661 के बराबर है। १७३४ में आयलर ने सिद्ध किया कि इसका मान π2/6 के बराबर है
सन्दर्भ
- ↑ Ayoub, Raymond (1974). "Euler and the zeta function". Amer. Math Monthly,. 81: 1067–86. मूल से 14 अगस्त 2019 को पुरालेखित. अभिगमन तिथि 3 मार्च 2015.सीएस1 रखरखाव: फालतू चिह्न (link)
- ↑ "E41 -- De summis serierum reciprocarum". मूल से 25 मार्च 2018 को पुरालेखित. अभिगमन तिथि 3 मार्च 2015.