डिफरेंशियल ऑपरेटर L | ग्रीन का फलन G | अनुप्रयोग के उदाहरण |
---|
![{\displaystyle \partial _{t}^{n+1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/adcd61b629936a493a6c18c48660cb9fa7a4df19) | ![{\displaystyle {\frac {t^{n}}{n!}}\Theta (t)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/060ea9a8e310d0ca937b194a327e3aa60fa1d16a) | |
![{\displaystyle \partial _{t}+\gamma }](https://wikimedia.org/api/rest_v1/media/math/render/svg/89d92cb61eec67d73881e395abc9e0f0b3d8e05f) | ![{\displaystyle \Theta (t)e^{-\gamma t}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3699acd24c51875d2beec83b1b3b95d42d7b5c5c) | |
![{\displaystyle \left(\partial _{t}+\gamma \right)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c3631f93af0e258612ca6843dbac7aa9c9f2597) | ![{\displaystyle \Theta (t)te^{-\gamma t}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a3ee58196ec91236608cce4c2a66a17c611510e) | |
where ![{\displaystyle \gamma <\omega _{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9214aa0b0fd382f70f2de15da12c8091df924875) | with ![{\displaystyle \omega ={\sqrt {\omega _{0}^{2}-\gamma ^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d769dd4e3524737a31ec5690f25f72efdf96b676) | 1D underdamped harmonic oscillator |
where ![{\displaystyle \gamma >\omega _{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1cf6c49d7803bac367f19ded84795e12b9bbd397) | with ![{\displaystyle \omega ={\sqrt {\gamma ^{2}-\omega _{0}^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39bec50926e8cbc9c875978d711be2443c439134) | 1D overdamped harmonic oscillator |
where ![{\displaystyle \gamma =\omega _{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90ec71b6df5f5767b43b24155be9b1f7f61e9f9c) | ![{\displaystyle \Theta (t)e^{-\gamma t}t}](https://wikimedia.org/api/rest_v1/media/math/render/svg/311b8c7ce47ea7db749b57506bda54ad67890479) | 1D critically damped harmonic oscillator |
2D Laplace operator ![{\displaystyle \nabla _{\text{2D}}^{2}=\partial _{x}^{2}+\partial _{y}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d3c7d8cade722386783a1784d4805b65185174c) | with ![{\displaystyle \rho ={\sqrt {x^{2}+y^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6639197208572a96358af21debdbdaf96ae306a4) | 2D Poisson equation |
3D Laplace operator ![{\displaystyle \nabla _{\text{3D}}^{2}=\partial _{x}^{2}+\partial _{y}^{2}+\partial _{z}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/43a051609385b6241ef37a3436354023993af2d4) | with ![{\displaystyle r={\sqrt {x^{2}+y^{2}+z^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b3aa75a8168815c2353d805d4279cef86b632dc) | Poisson equation |
Helmholtz operator ![{\displaystyle \nabla _{\text{3D}}^{2}+k^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/771d26abb32dbb837450aa47f3e7801b1622e3d4) | ![{\displaystyle {\frac {-e^{-ikr}}{4\pi r}}=i{\sqrt {\frac {k}{32\pi r}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3eaac393405ed46b5aeaab426edc81b0d0c7f234) ![{\displaystyle H_{1/2}^{(2)}(kr)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/682bdfe5e8a454e568523cc5b03bd9515e7e2bb9) ![{\displaystyle =i{\frac {k}{4\pi }}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a1eaa2393d349e4ae1d6a363e316ed0989248613) ![{\displaystyle h_{0}^{(2)}(kr)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6d886ec763936aa5064b8609562a6dceddb4a2) | stationary 3D Schrödinger equation for free particle |
in dimensions | ![{\displaystyle -(2\pi )^{-n/2}\left({\frac {k}{r}}\right)^{n/2-1}K_{n/2-1}(kr)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84c3fec6da3f9bfc7ee54aa675381e7b0b6891e1) | Yukawa potential, Feynman propagator |
![{\displaystyle \partial _{t}^{2}-c^{2}\partial _{x}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ba4129d4c46c2430cf3d9ee0759600d17d751360) | ![{\displaystyle {\frac {1}{2c}}\Theta (t-|x/c|)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99671f4d9f9ada435c1ea873b3a1ca83990a7ae1) | 1D wave equation |
![{\displaystyle \partial _{t}^{2}-c^{2}\,\nabla _{\text{2D}}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4bc7e476dba574cdd66a01ed0ad0302ddd30f89d) | ![{\displaystyle {\frac {1}{2\pi c{\sqrt {c^{2}t^{2}-\rho ^{2}}}}}\Theta (t-\rho /c)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e76b90b2f1d2ffcd1d879a2b1b7070ca75b61c8e) | 2D wave equation |
D'Alembert operator ![{\displaystyle \square ={\frac {1}{c^{2}}}\partial _{t}^{2}-\nabla _{\text{3D}}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7c54886033ca723495ee942d278c285427ceb70) | ![{\displaystyle {\frac {\delta (t-{\frac {r}{c}})}{4\pi r}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3524e80d2c77d01a66ca20b1d28a77e1ee6c0f0) | 3D wave equation |
![{\displaystyle \partial _{t}-k\partial _{x}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/542999d7fadda81022f93e51b3afbed89f94eeee) | ![{\displaystyle \Theta (t)\left({\frac {1}{4\pi kt}}\right)^{1/2}e^{-x^{2}/4kt}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd8ebaac3b473fc91de5dd5ef952ea772e06c9ae) | 1D diffusion |
![{\displaystyle \partial _{t}-k\,\nabla _{\text{2D}}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b98af1803ba8abb236457f127676aab328dcf69a) | ![{\displaystyle \Theta (t)\left({\frac {1}{4\pi kt}}\right)e^{-\rho ^{2}/4kt}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/74d413034de0a58585d506eb63df87c38a5efbcc) | 2D diffusion |
![{\displaystyle \partial _{t}-k\,\nabla _{\text{3D}}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/32866ae347781e72cdee4364d6d76b110009dd40) | ![{\displaystyle \Theta (t)\left({\frac {1}{4\pi kt}}\right)^{3/2}e^{-r^{2}/4kt}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/30648099bf696e19d0a2d081398bdf05e7019341) | 3D diffusion |
![{\displaystyle {\frac {1}{c^{2}}}\partial _{t}^{2}-\partial _{x}^{2}+\mu ^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/857b79030ac0602682a1c5ec4aa8943b0ba5b753) | with ![{\displaystyle u={\sqrt {c^{2}t^{2}-x^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db1cba2935638e3df96948b3c01fc93a8bac08d2) | 1D Klein–Gordon equation |
![{\displaystyle {\frac {1}{c^{2}}}\partial _{t}^{2}-\nabla _{\text{2D}}^{2}+\mu ^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c451b9be3db13b72497470522812a0fd9aee8af6) | with ![{\displaystyle u={\sqrt {c^{2}t^{2}-\rho ^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee72cdd34f22fcd4d00bce3ff8bcfe523e0b6c95) | 2D Klein–Gordon equation |
![{\displaystyle \square +\mu ^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0047a48a96d2568f9c30fd90e08020d6b12bf211) | with ![{\displaystyle u={\sqrt {c^{2}t^{2}-r^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5e141fce13c94a53ae43771f76101a5a84f48d47) | 3D Klein–Gordon equation |
![{\displaystyle \partial _{t}^{2}+2\gamma \partial _{t}-c^{2}\partial _{x}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/378303f00b5e7482a6ad76319628c7871ddb637a) | with ![{\displaystyle u={\sqrt {c^{2}t^{2}-x^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db1cba2935638e3df96948b3c01fc93a8bac08d2) | telegrapher's equation |
![{\displaystyle \partial _{t}^{2}+2\gamma \partial _{t}-c^{2}\,\nabla _{\text{2D}}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea09dbcff74b9bbe7123b5d562abb259c6729e8b) | with ![{\displaystyle u={\sqrt {c^{2}t^{2}-\rho ^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee72cdd34f22fcd4d00bce3ff8bcfe523e0b6c95) | 2D relativistic heat conduction |
![{\displaystyle \partial _{t}^{2}+2\gamma \partial _{t}-c^{2}\,\nabla _{\text{3D}}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/effcefce6e732a931586d9bfbcc30e73e11bcb0e) | with ![{\displaystyle u={\sqrt {c^{2}t^{2}-r^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5e141fce13c94a53ae43771f76101a5a84f48d47) | 3D relativistic heat conduction |