यदि p एक अशून्य वास्तविक संख्या है, तथा x 1 , … , x n {\displaystyle x_{1},\dots ,x_{n}} धनात्मक वास्तविक संख्याएँ हैं, तो इन संख्याओं का सामान्यीकृत माध्य (generalized mean) या p घात वाला घात माध्य (power mean) निम्नलिखित है-
M p ( x 1 , … , x n ) = ( 1 n ∑ i = 1 n x i p ) 1 p . {\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{p}\right)^{\frac {1}{p}}.}
विशिष्ट स्थितियाँA visual depiction of some of the specified cases for n = 2 with a = x1 = M+∞ , b = x2 = M−∞ , ██ harmonic mean, H = M −1 (a , b ) , ██ geometric mean, G = M 0 (a , b ) ██ arithmetic mean, A = M 1 (a , b ) , and ██ quadratic mean, Q = M 2 (a , b ) . M − ∞ ( x 1 , … , x n ) = lim p → − ∞ M p ( x 1 , … , x n ) = min { x 1 , … , x n } {\displaystyle M_{-\infty }(x_{1},\dots ,x_{n})=\lim _{p\to -\infty }M_{p}(x_{1},\dots ,x_{n})=\min\{x_{1},\dots ,x_{n}\}} निम्निष्ट M − 1 ( x 1 , … , x n ) = n 1 x 1 + ⋯ + 1 x n {\displaystyle M_{-1}(x_{1},\dots ,x_{n})={\frac {n}{{\frac {1}{x_{1}}}+\dots +{\frac {1}{x_{n}}}}}} हरात्मक माध्य (harmonic mean) M 0 ( x 1 , … , x n ) = lim p → 0 M p ( x 1 , … , x n ) = x 1 ⋅ ⋯ ⋅ x n n {\displaystyle M_{0}(x_{1},\dots ,x_{n})=\lim _{p\to 0}M_{p}(x_{1},\dots ,x_{n})={\sqrt[{n}]{x_{1}\cdot \dots \cdot x_{n}}}} गुणोत्तर माध्य (geometric mean) M 1 ( x 1 , … , x n ) = x 1 + ⋯ + x n n {\displaystyle M_{1}(x_{1},\dots ,x_{n})={\frac {x_{1}+\dots +x_{n}}{n}}} समान्तर माध्य (arithmetic mean) M 2 ( x 1 , … , x n ) = x 1 2 + ⋯ + x n 2 n {\displaystyle M_{2}(x_{1},\dots ,x_{n})={\sqrt {\frac {x_{1}^{2}+\dots +x_{n}^{2}}{n}}}} वर्ग माध्य (quadratic mean]])M 3 ( x 1 , … , x n ) = x 1 3 + ⋯ + x n 3 n 3 {\displaystyle M_{3}(x_{1},\dots ,x_{n})={\sqrt[{3}]{\frac {x_{1}^{3}+\dots +x_{n}^{3}}{n}}}} घन माध्य (cubic mean) M + ∞ ( x 1 , … , x n ) = lim p → ∞ M p ( x 1 , … , x n ) = max { x 1 , … , x n } {\displaystyle M_{+\infty }(x_{1},\dots ,x_{n})=\lim _{p\to \infty }M_{p}(x_{1},\dots ,x_{n})=\max\{x_{1},\dots ,x_{n}\}} उचिष्ट (maximum)
Proof of lim p → 0 M p = M 0 {\displaystyle \textstyle \lim _{p\to 0}M_{p}=M_{0}} (geometric mean) We can rewrite the definition of Mp using the exponential function
M p ( x 1 , … , x n ) = exp ( ln [ ( ∑ i = 1 n w i x i p ) 1 / p ] ) = exp ( ln ( ∑ i = 1 n w i x i p ) p ) {\displaystyle M_{p}(x_{1},\dots ,x_{n})=\exp {\left(\ln {\left[\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\right]}\right)}=\exp {\left({\frac {\ln {\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)}}{p}}\right)}} In the limit p → 0, we can apply L'Hôpital's rule to the argument of the exponential function. Differentiating the numerator and denominator with respect to p, we have
lim p → 0 ln ( ∑ i = 1 n w i x i p ) p = lim p → 0 ∑ i = 1 n w i x i p ln x i ∑ i = 1 n w i x i p 1 = lim p → 0 ∑ i = 1 n w i x i p ln x i ∑ i = 1 n w i x i p = ∑ i = 1 n w i ln x i = ln ( ∏ i = 1 n x i w i ) {\displaystyle \lim _{p\to 0}{\frac {\ln {\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)}}{p}}=\lim _{p\to 0}{\frac {\frac {\sum _{i=1}^{n}w_{i}x_{i}^{p}\ln {x_{i}}}{\sum _{i=1}^{n}w_{i}x_{i}^{p}}}{1}}=\lim _{p\to 0}{\frac {\sum _{i=1}^{n}w_{i}x_{i}^{p}\ln {x_{i}}}{\sum _{i=1}^{n}w_{i}x_{i}^{p}}}=\sum _{i=1}^{n}w_{i}\ln {x_{i}}=\ln {\left(\prod _{i=1}^{n}x_{i}^{w_{i}}\right)}} By the continuity of the exponential function, we can substitute back into the above relation to obtain
lim p → 0 M p ( x 1 , … , x n ) = exp ( ln ( ∏ i = 1 n x i w i ) ) = ∏ i = 1 n x i w i = M 0 ( x 1 , … , x n ) {\displaystyle \lim _{p\to 0}M_{p}(x_{1},\dots ,x_{n})=\exp {\left(\ln {\left(\prod _{i=1}^{n}x_{i}^{w_{i}}\right)}\right)}=\prod _{i=1}^{n}x_{i}^{w_{i}}=M_{0}(x_{1},\dots ,x_{n})} as desired.
Proof of lim p → ∞ M p = M ∞ {\displaystyle \textstyle \lim _{p\to \infty }M_{p}=M_{\infty }} and lim p → − ∞ M p = M − ∞ {\displaystyle \textstyle \lim _{p\to -\infty }M_{p}=M_{-\infty }} Assume (possibly after relabeling and combining terms together) that x 1 ≥ ⋯ ≥ x n {\displaystyle x_{1}\geq \dots \geq x_{n}} . Then
lim p → ∞ M p ( x 1 , … , x n ) = lim p → ∞ ( ∑ i = 1 n w i x i p ) 1 / p = x 1 lim p → ∞ ( ∑ i = 1 n w i ( x i x 1 ) p ) 1 / p = x 1 = M ∞ ( x 1 , … , x n ) . {\displaystyle \lim _{p\to \infty }M_{p}(x_{1},\dots ,x_{n})=\lim _{p\to \infty }\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}=x_{1}\lim _{p\to \infty }\left(\sum _{i=1}^{n}w_{i}\left({\frac {x_{i}}{x_{1}}}\right)^{p}\right)^{1/p}=x_{1}=M_{\infty }(x_{1},\dots ,x_{n}).} The formula for M − ∞ {\displaystyle M_{-\infty }} follows from M − ∞ ( x 1 , … , x n ) = 1 M ∞ ( 1 / x 1 , … , 1 / x n ) . {\displaystyle M_{-\infty }(x_{1},\dots ,x_{n})={\frac {1}{M_{\infty }(1/x_{1},\dots ,1/x_{n})}}.}
इन्हें भी देखें