सामग्री पर जाएँ

संख्या पद्धतियों की सूची

यहाँ संख्या पद्धतियों की सूची दी गयी है।

स्थानीय प्रतीक

ये सभी स्थानीय-मान पर आधारित हैं। इनमें से कुछ निम्नलिखित हैं-

मानक (Standard)

A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time.

For the definition of standard positional numeral systems, see Non-standard positional numeral systems.

The common names are derived somewhat arbitrarily from Latin and Greek. For more information, see Hexadecimal#Etymology.

BaseNameUsage
2BinaryAll modern digital computations.
3TernaryCantor set (all points in [0,1] that can be represented in ternary with no 1s.)
4QuaternaryData transmission and Hilbert curves.
5Quinary
6SenaryDiceware
7Septenary
8OctalCharles XII of Sweden, Unix-like permissions
9Nonary
10DecimalMost widely used by modern civilizations.[1][2]
11Undecimal
12Duodecimal
13TridecimalThe Maya calendar.
14TetradecimalProgramming for the HP 9100A/B calculator[3] and image processing applications[4].
15PentadecimalTelephony routing over IP and the Huli language.
16HexadecimalHuman-friendly representation (hex dump) of binary data and Base16 encoding.
20VigesimalCeltic numerals, Maya numerals
24Tetravigesimal
26Hexavigesimal
27SeptemvigesimalTelefol and Oksapmin languages.
30Trigesimal
32DuotrigesimalBase32 encoding and the Ngiti language.
36HexatridecimalBase36 encoding.
60SexagesimalThe Babylonian numerals positional numeral system.
64TetrasexagesimalBase64 encoding.
85Ascii85 encoding.
BaseNameUsage
1UnaryTally marks.
10Decimal without a zero
BaseNameUsage
2Non-adjacent form
3Balanced ternaryTernary computers.

The common names of the negative base numeral systems are formed using the prefix nega-, giving names such as:

BaseNameUsage
−2Negabinary
−3Negaternary
−10Negadecimal
BaseNameUsage
2iQuater-imaginary base
−1 ± iTwindragon baseTwindragon fractal shape.
BaseNameUsage
φGolden ratio baseEarly Beta encoder.[5]
eBase e
πBase π
√2Base √2

अन्य

गैर-स्थानीय अंकन (non-positional notation)

बेबिलोन अंकों (Babylonian numerals) के पहले विकसित सभी संख्या पद्धतियाँ स्थानीय मान पर आधारित नहीं हैं।

अंक

नामआधारनमूनासर्वप्रथम कब प्रयुक्त हुआ (लगभग)
बेबीलोनी अंक603100 B.C.
ग्रीक अंक10α β γ δ ε ϝ ζ η θ ι
रोमन अंक10I II III IV V VI VII VIII IX X1000 B.C.
चीनी छड़ अंक]]10 1st century
हिन्दू अंक100 1 2 3 4 5 6 7 8 9 109वीं शताब्दी

सन्दर्भ

  1. The History of Arithmetic, Louis Charles Karpinski, 200pp, Rand McNally & Company, 1925.
  2. Histoire universelle des chiffres, Georges Ifrah, Robert Laffont, 1994 (Also: The Universal History of Numbers: From prehistory to the invention of the computer, Georges Ifrah, ISBN 0-471-39340-1, John Wiley and Sons Inc., New York, 2000. Translated from the French by David Bellos, E.F. Harding, Sophie Wood and Ian Monk)
  3. "संग्रहीत प्रति". मूल से 5 फ़रवरी 2012 को पुरालेखित. अभिगमन तिथि 20 जुलाई 2012.
  4. See a patent Archived 2012-02-07 at the वेबैक मशीन at Free Patents Online
  5. Ward, Rachel (2008), "On Robustness Properties of Beta Encoders and Golden Ratio Encoders", IEEE Transactions on Information Theory, 54 (9): 4324–4334, डीओआइ:10.1109/TIT.2008.928235