सामग्री पर जाएँ

विशिष्ट ऊष्मा धारिता

यह एक सामान्य अनुभव है कि किसी वस्तु का ताप बढ़ाने के लिये उसे उष्मा देनी पड़ती है। किन्तु अलग-अलग पदार्थों की समान मात्रा का ताप समान मात्रा से बढ़ाने के लिये अलग-अलग मात्रा में उष्मा की जरूरत होती है। किसी पदार्थ की इकाई मात्रा का ताप एक डिग्री सेल्सियस बढ़ाने के लिये आवश्यक उष्मा की मात्रा को उस पदार्थ का विशिष्ट उष्मा धारिता (Specific heat capacity) या केवल विशिष्ट उष्मा कहा जाता है। इससे स्पष्ट है कि जिस पदार्थ की विशिष्ट उष्मा अधिक होगी उसे गर्म करने के लिये अधिक उष्मा की आवश्यकता होगी। उदाहरण के लिये, शीशा (लेड) का ताप १ डिग्री सेल्सियस बढ़ाने के लिये जितनी उष्मा लगती है उससे आठ गुना उष्मा एक किलोग्राम मग्नीशियम का ताप १ डिग्री सेल्सियस बढ़ाने के लिये आवश्यक होती है। किसी भी पदार्थ की विशिष्ट उष्मा मापी जा सकती है। विशिष्ट ऊष्मा का S.I. मात्रक जूल/ किलोग्राम/ केल्विन है एवं इसका व्यावहारिक मात्रक कैलोरी /ग्राम / डिग्री सेल्सियस होता है। इसका लोहे की छड़ पर क्या प्रभाव पड़ेगा इसका उत्तर क्या होगा

उष्मा, उष्मा-धारिता एवं ताप-परिवर्तन

जहाँ पदार्थ को दी गयी/पदार्थ से ली गयी उष्मा की मात्रा है;

पदार्थ का द्रव्यमान है; विशिष्ट उष्मा धारिता है; और ताप में परिवर्तन है।

  • जब पदार्थ की इकाई मात्रा मोल के रूप में दी गयी हो तो-
जहाँ पदार्थ को दी गयी/पदार्थ से ली गयी उष्मा की मात्रा है;

मोलों की संख्या है; विशिष्ट उष्मा है; तथा ताप में परिवर्तन है।

तापवृद्धि के समय बाह्य स्थिति के अनुसार पदार्थों की विशिष्ट उष्मा के अनेक मान होते हैं। एक तो स्थिर आयतनवाली विशिष्ट उष्मा होती है जो उसकी आंतरिक ऊर्जा से संबंधित रहती है। मापन क्रिया के समय आयतन में परिवर्तन होने के कारण आयतनवृद्धि के लिए कार्य करना पड़ता है और तापवृद्धि के साथ साथ कुछ उष्मा की इस काम के लिए भी आवश्यकता होती है। काम की मात्रा दाब के आश्रित है और यदि यह दाब स्थिर न हो तो यह मात्रा भी परिवर्तित होगी। इसीलिए स्थितियों में भेद होने के कारण विशिष्ट उष्मा के अनेक मान होते हैं, किन्तु सुविधा के लिए केवल दो पर ही विचार किया जाता है। एक का सम्बन्ध स्थिर आयतन और दूसरे का स्थिर दाब से है और इनको क्रमानुसार Cv और Cp लिखा जाता है। ठोसों और द्रवों में तापीय प्रसरण अपेक्षाकृत कम होता है, अत: विशिष्ट उष्मा के अनेक मान लगभग बराबर होते हैं किन्तु गैसों में इनमें बहुत अन्तर होता है। बहुपरमाण्वीय अणुओं में विशिष्ट उष्मा को अणुभार से गुणा करने पर उनकी आणव उष्मा (मॉलिक्युलर हीट) और एक परमाणुक अणुओं में विशिष्ट उष्मा को परमाणुभर से गुणा करने पर उनकी पारमाण्वीय उष्मा (ऐटॉमिक हीट) प्राप्त होती है। इस संबंध में आदर्श गैसों में यह सूत्र लागू होता है:

Cp - Cv = R

यहाँ पर R पूर्ववर्णित गैस नियतांक है।

विशिष्ट उष्मा के सिद्धान्त

सन् १८१९ में डयूलांग और पेटिट ने यह नियम प्रतिपादित किया कि सब ठोस तत्वों की स्थिर आयतनवाली पारमाण्वीय उष्मा एक ही होती है और उसका मान ५.९४ कलरी/ग्राम परमाणु डिग्री सेल्सियस होता है। शीघ्र ही प्रयोगों द्वारा यह सिद्ध हुआ कि हल्के तत्व कार्बन, बोरॉन और सिलिकन - इस नियम के अपवाद हैं। पूर्ववर्णित नर्न्स्ट के प्रयोगों से यह ज्ञात हुआ कि ताप कम होने पर यह नियम किसी भी ठोस पर लागू नहीं होता और ताप घटने पर सब तत्वों की पारमाण्वीय उष्मा घटती जाती है, यहाँ तक कि परम शून्य के निकट लगभग शून्य हो जाती है।

किसी तन्त्र (सिस्टम) की ऊर्जा के व्यंजक में जितने वर्ग (स्क्वेयर) पद आते हैं उनकी संख्या उस समुदाय की स्वतंत्रता संख्या (डिग्रीज़ ऑव फ्रीडम) कहलाती है। एकपरमाणुक आदर्श गैसों में यह संख्या ३ प्रति अणु और ठोस तत्वों में यह ६ प्रति परमाणु होती है।

डयूलांग और पेटिट के नियम की निम्न ताप पर विफलता को आइंस्टाइन ने १९०७ में प्लांक के क्वांटम सिद्धांत के आधार पर समझाने का प्रयास किया। इस सिद्धान्त के अनुसार कोई भी n आवृत्तिवाला दोलक ऊर्जा का शोषण अथवा उत्सर्जन केवल h n बंडलों अर्थात् क्वांटमों में ही करता है। यहाँ h प्लांक स्थिरांक है। आइंस्टाइन ने सब परमाणुओं की आवृत्तियाँ एक ही मानकर पारमाण्वीय उष्मा की गणना की और प्रायोगिक परिणामों को मोटे रूप से समझाया।

आइंस्टाइन ने स्वयं ही स्वीकार किया था कि उसका सब परमाणु की एक ही आवृत्ति मानना उचित नहीं था। डिबाई ने संपूर्ण ठोस को अविरत (कंटिनुअस) मानकर गणना की कि यह ठोस कुल कितने प्रकार से दोलन कर सकता है। अविरत ठोस में यह संख्या अनन्त होती है और इस कारण पारमाण्वीय उष्मा भी अनन्त ही होनी चाहिए। इससे बचने के लिए डिबाई ने यह निराधार कल्पना की कि एक विशिष्ट आवृत्ति से ऊपर किसी दोलन की सम्भावना नहीं। यह आवृत्ति ऐसी होती है कि उससे नीचेवाली समस्त आवृत्तियों की कुल संख्या ३N होती है।

बहुत समय तक डिबाई का सिद्धान्त प्रायोगिक परिणामों को समझाने में सफल रहा, किन्तु कुछ समय पश्चात् उसकी यर्थाथता कम हो गई। बॉर्न ने ठोस के क्रिस्टलीय स्वरूप को ध्यान में रखा और दोलन वर्णक्रम (स्पेक्ट्रम) को ऐसी आवृत्ति पर समाप्त किया जिसके तरंगदैर्घ्य का संबंध माणिभ की बनावट से है। यह समाप्ति क्रिस्टल की बनावट पर आधारित होने के कारण डिबाई की आवृत्ति समाप्ति से श्रेष्ठ है। बॉर्न के सिद्धांत का ब्लैकमैन, कैलरमैन इत्यादि ने विकास किया और इसके द्वारा प्रायोगिक परिणामों की सफलतापूर्वक व्याख्या की।

भारतीय वैज्ञानिक चन्द्रशेखर वेंकट रमण ने यह सिद्धान्त प्रतिपादित किया कि किसी भी उष्मिक दोलन को सम्पूर्ण ठोस का दोलन मानना त्रुटिपूर्ण है। उनके अनुसार कोई भी उष्मिक दोलन केवल कुछ परमाणु समुदाय का दोलन होता है और प्रत्येक दोलन का यह रूप होता है कि उनमें निकटस्थ किस्ट्रल सेलों में ऊर्जा की मात्रा बराबर होती है। विश्वेश्वरदयाल ने रमण के सिद्धांत द्वारा अनेक ठोसों की पारमाण्वीय उष्मा की गणना की और उनका प्रायोगिक फलों से मेल सिद्ध किया। सिद्धान्ततः भिन्न होने पर भी रमण और बॉर्न के सिद्धान्तों द्वारा गणना की हुई पारमाण्वीय उष्मा के मान में विशेष अन्तर नहीं पाया जाता।

गैसों की आणव उष्मा की गणना करने के लिए उसको तीन भागों में विभक्त किया जाता है जिनका सम्बन्ध क्रमानुसार सरल गति, घूर्णन गति और दोलन से होता है। यदि किसी गैस अणु में n परमाणु हों तो उसकी कुल स्वतंत्रता संख्या (3n) होती है जिसमें तीन सरल गति से, दो या तीन घूर्णन से और शेष दोलन से सम्बंधित हैं। सरल गति से उत्पन्न आणव उष्मा प्रति स्वंतत्रता-संख्या 1/2k होती है। यदि अणुभार और ताप बहुत कम न हों तो यही प्रभाव घूर्णन का भी होता है, परन्तु इनके कम होने पर घूर्णन के प्रभाव की क्वाण्टम सांख्यिकी द्वारा गणना की जाती है। दोलन का प्रभाव ठोसों के सम्बन्ध में वर्णित आइंस्टाइन के सिद्धान्त के अनुसार किया जाता है। इस सम्बन्ध में प्रयुक्त दोलन आवृत्तियों की गणना रमण प्रभाव और अवरक्त (इनफ्रा-रेड) आवृत्तियों के अध्ययन द्वारा की जाती है।

एकपरमाणुक गैसों का नियत ताप पर मोलर ऊष्मा धारिता निम्नलिखित सूत्र से दी जाती है-

नीचे की सारणी में कुछ एकपरमाणुक गैसों के १ वायुमण्दलीय दाब तथा 25 °C ताप पर मोलर स्थिर-आयतन ऊष्मा धारिताएँ दी गयीं हैं।

एकपरमाणुक गैस CV, m (J/(mol⋅K)) CV, m/R
He12.51.50
Ne12.51.50
Ar12.51.50
Kr12.51.50
Xe12.51.50

नीचे की सारणी में कुछ द्विपरमाणुक गैसों के मानक ताप (25 °C = 298 K) पर मोलर स्थिर-आयतन ऊष्मा धारिताएँ दी गयीं हैं।

द्विपरमाणुक गैस CV, m (J/(mol⋅K)) CV, m/R
H220.182.427
CO20.22.43
N219.92.39
Cl224.13.06
Br2 (vapour)28.23.39

द्विपरमाणुक गैसों की नियत-आयतन पर मोलर ऊष्मा धारिताएँ इस सूत्र से प्राप्त की जा सकतीं हैं-

विशिष्ट ऊष्मा का मापन

किसी वस्तु की विशिष्ट उष्मा ज्ञात करने के लिए सर्वप्रथम उसको ऊँचे ताप तक गरम करते हैं और फिर उसको एक आंशिक रूप से पानी भरे बरतन (कलरीमापी) में डाल देते हैं। वस्तु के ठंडी होने में जितनी कलरियाँ मिलीं उनको कलरीमापी और पानी द्वारा प्राप्त कलरियों के बराबर रखकर विशिष्ट उष्मा की गणना कर लेते हैं।

विशिष्ट उष्मा निकालने की एक अन्य विधि यह भी है कि पदार्थ के ऊपर इतनी भाप को प्रवाहित करें कि उसका ताप बढ़कर भाप के ताप के बराबर हो जाए। यदि इस विधि में m ग्राम भाप संघनित (कनडेन्स) होती है तो उसके पानी बनने में m L कलरी प्राप्त होती हैं (L = गुप्त ताप)। इसको पदार्थ द्वारा शोषित उष्मा के बराबर रखकर विशिष्ट उष्मा की गणना कर लेते हैं।

कुछ पदार्थों की विशिष्ट उष्माएँ

पदार्थ कला या अवस्था
(फेज)
Cp
kJ kg−1 K−1
Cp,m
J mol−1 K−1
Cv,m
J mol−1 K−1
आयतनिक
विशिष्ट उष्मा
J cm−3 K−1
वायुमंडल/वायु (Sea level, dry, 0 °C)गैस1.003529.0720.76430.001297
Air (typical room conditionsA)गैस1.01229.1920.85
एलुमिनियमठोस0.89724.22.422
अमोनियाद्रव4.70080.083.263
Animal (and human) tissue[1]mixed 3.5-3.7*
एंटीमनीठोस0.20725.21.386
आर्गनगैस0.520320.786212.4717
आर्सेनिकठोस0.32824.61.878
बेरिलियमठोस1.8216.43.367
बिस्मथ[2]ठोस0.12325.71.20
ताँबा (Copper)ठोस0.38524.473.45
कार्बन डाईआक्साइड CO2[3]गैस0.839*36.9428.46
हीराठोस0.50916.1151.782
एथनॉलद्रव2.441121.925
Gasolineद्रव2.222281.64
काच[2]ठोस0.84
स्वर्णठोस0.229125.422.492
ग्रेनाइट[2]ठोस0.7902.17
ग्रेफाइटठोस0.7108.531.534
हीलियमगैस5.193220.786212.4717
हाइड्रोजनगैस14.3028.82
हाइड्रोजन सल्फाइड H2S[3]गैस1.015*34.60
लोहाठोस0.45025.13.537
सीसाठोस0.12726.41.44
लिथियमठोस3.5824.81.912
मग्नीसियमठोस1.0224.91.773
पाराद्रव0.139527.981.888
मीथेन 275Kगैस2.191
नाइट्रोजनगैस1.04029.1220.8
निऑनगैस1.030120.786212.4717
ऑक्सीजनगैस0.91829.38
मोमठोस2.59002.325
पॉलीथीन (rotomolding grade)[4]ठोस2.3027
पॉलीथीन (rotomolding grade)[5]द्रव2.9308
सिलिका (fused)ठोस0.70342.21.547
रजत[2]ठोस0.23324.92.44
टंगस्टन[2]ठोस0.13424.82.58
यूरेनियमठोस0.11627.72.216
[[पानी (वाष्प)gas (100 °C)2.08037.4728.03
पानीद्रव (25 °C)4.181375.32774.534.186
पानी (बर्फ)[2]solid (-10 °C)2.05038.091.938
जस्ता[2]ठोस0.38725.22.76
All measurements are at 25 °C unless otherwise noted.
Notable minima and maxima are shown in maroon.

भवन निर्माण में प्रयुक्त पदार्थों की विशिष्ट उष्माएँ

(Usually of interest to builders and solar designers)

Substance Phase cp
J g−1 K−1
Asphaltsolid0.92
Bricksolid0.84
Concretesolid0.88
Glass, silicasolid0.84
Glass, crownsolid0.67
Glass, flintsolid0.503
Glass, pyrexsolid0.753
Granitesolid0.790
Gypsumsolid1.09
Marble, micasolid0.880
Sandsolid0.835
Soilsolid0.80
Woodsolid0.42

इन्हें भी देखें

सन्दर्भ

  1. Page 183 in: Medical biophysics. Flemming Cornelius. 6th Edition, 2008. (also giving a density of 1.06 kg/l)
  2. "Table of Specific Heats". मूल से 22 अप्रैल 2009 को पुरालेखित. अभिगमन तिथि 8 अप्रैल 2009.
  3. Textbook: Young and Geller College Physics, 8e, Pearson Education, 2008
  4. R.J. Crawford, Rotational molding of plastics
  5. R.J. Crawford, Rotational molding of plastics

बाहरी कड़ियाँ