सामग्री पर जाएँ

तनाव पुष्टि

निर्माण में प्रयुक्त इस्पात का प्रतिबल-विकृति ग्राफ
1. अधिकतम् सामर्थ्य (Ultimate Strength)
2. पराभव सामर्थ्य (Yield strength)
3. विभंजन (Rupture)
4. विकृति कठोरता क्षेत्र (Strain hardening region)
5. ग्रीवण क्षेत्र (Necking region)
A: आभासी (इंजीनियरी) सामर्थ्य (Apparent (engineering) stress) (F/A0)
B: वास्तविक (सत्य) प्रतिबल (F/A)

किसी पदार्थ की तनन सामर्थ्य या तनाव पुष्टि (Tensile strength) (σUTS या SU) उस पदार्थ के प्रतिबल-विकृति वक्र (stress-strain curve) के महत्तम बिन्दु होता है तथा यह संकेत देता है कि किस प्रतिबल के बाद गर्दन बनना (necking) आरम्भ होगा। इसका मान परीक्षण के लिये ली गयी पदार्थ के नमूने के आकार (साइज) पर निर्भर नहीं करता।

संरचनाओं (structures) तथा यांत्रिक युक्तियों में प्रयुक्त इंजीनियरी पदार्थों के लिये प्रत्यास्थता गुणांक तथा क्षरण प्रतिरोध (corrosion resistance) के साथ-साथ तनाव-पुष्टि अत्यन्त महत्व की राशि है। मिश्रधातुओं, कम्पोजिट पदार्थों, सिरैमिक्स, प्लास्टिकों, काष्ठ, कांक्रीट आदि के लिये इसके मान दिये जाते हैं।

व्याख्या

तनाव पुष्टि की तीन परिभाषाएँ हैं-

(१) पराभव सामर्थ्य (Yield strength) जिस प्रतिबल पर पदार्थ की विकृति प्रत्यास्थ से अप्रत्यास्थ मे बदलने लगती है जिससे पदार्थ में स्थायी विकृति उत्पन्न हो जाती है।

(२) अधिकतम सामर्थ्य (Ultimate strength) यह वह प्रतिबल है जो प्रतिबल-विकृति ग्राफ में अधिकतम् प्रतिबल की सूचक होती है।

(३) विभंजक सामर्थ्य (Breaking strength) यह वह प्रतिबल-विकृति वक्र के उस बिन्दु पर प्रतिबल का मान है जिस पर वस्तु टूट (rupture) जाती है।

कुछ पदार्थों के तनाव-पुष्टि

कुछ पदार्थों के सामान्य तनाव पुष्टि के मान नीचे की सारणी में दिया गया है-

पदार्थYield strength
(MPa)
Ultimate strength
(MPa)
घनत्व
(g/cm³)
कार्बन नैनोट्यूब की प्रथम रस्सियाँ?3,6001.3
स्ट्रक्चरल स्टील ASTM A36 steel2504007.8
Steel, API 5L X65[1]4485317.8
Steel, high strength alloy ASTM A5146907607.8
Steel, prestressing strands1,6501,860[] || 7.8
Steel Wire  7.8
Steel (AISI 1060 0.6% carbon) Piano wire 2,200-2,482[2]7.8
High density polyethylene (HDPE)26-33370.95
Polypropylene12-4319.7-800.91
Stainless steel AISI 302 - Cold-rolled5208608.19
Cast iron 4.5% C, ASTM A-48130200 
Titanium alloy (6% Al, 4% V)8309004.51
Beryllium[3] 99.9% Be3454481.84
Aluminium alloy[4] 2014-T64144832.8
Copper 99.9% Cu702208.92
Cupronickel 10% Ni, 1.6% Fe, 1% Mn, balance Cu1303508.94
Brass200+5505.3
Tungsten 1,51019.25
Glass 50 (in compression)2.53
E-GlassN/A3,4502.57
S-GlassN/A4,7102.48
Basalt fiber[5]N/A4,8402.7
MarbleN/A15 
ConcreteN/A3 
Carbon FiberN/A5,6501.75
Human hair 380 
Spider silk (See note below)1,000 
Silkworm silk500  
Aramid (Kevlar or Twaron)3,620 1.44
UHMWPE23460.97
UHMWPE fibers[6][7] (Dyneema or Spectra)2,300-3,5000.97
Vectran 2,850-3,340 
Polybenzoxazole (Zylon) 5,800 
Pine wood (parallel to grain) 40 
Bone (limb)104-1211301.6
Nylon, type 6/645751.15
Rubber-15 
BoronN/A3,1002.46
Silicon, monocrystalline (m-Si)N/A7,0002.33
Silicon carbide (SiC)N/A3,440 
Sapphire (Al2O3)N/A1,9003.9-4.1
Carbon nanotube (see note below)N/A11,000-63,0000.037-1.34
Carbon nanotube compositesN/A1,200[8]N/A
  • Note: Multiwalled carbon nanotubes have the highest tensile strength of any material yet measured, with labs producing them at a tensile strength of 63 GPa[9], still well below their theoretical limit of 300 GPa. The first nanotube ropes (20 mm long) whose tensile strength was published (in 2000) had a strength of 3.6 GPa, still well below their theoretical limit.[10] The density is different depending on the manufacturing method, and the lowest value is 0.037 or 0.55(solid)[11].
  • Note: many of the values depend on manufacturing process and purity/composition.
  • Note: human hair strength varies by ethnicity and chemical treatments.
  • Note on spider silk strength: The strength of spider silk is highly variable. It depends on many factors including type of silk (every spider can produce several different types for different purposes), the particular species, the age of the silk, the temperature, the humidity, the rate at which stress is applied during testing, the length of time the stress is applied and the way the silk is collected (forced silking or natural spinning)[12]. The value shown in the table, 1000 MPa, is roughly representative of the results from a few studies involving several different species of spider however specific results varied greatly.[13]
Elements in the annealed stateYoung's Modulus
(GPa)
Proof or yield stress
(MPa)
Ultimate strength
(MPa)
Aluminium7015-2040-50
Copper13033210
Gold79 100
Iron21180-100350
Lead16 12
Nickel17014-35140-195
Silicon1075,000-9,000 
Silver83 170
Tantalum186180200
Tin479-1415-200
Titanium120100-225240-370
Tungsten411550550-620
Zinc (wrought)105 110-200

(स्रोत: A.M. Howatson, P.G. Lund and J.D. Todd, "Engineering Tables and Data" p41)

सन्दर्भ

  1. "USStubular.com". मूल से 8 अप्रैल 2010 को पुरालेखित. अभिगमन तिथि 22 जनवरी 2010.
  2. "Don Stackhouse @ DJ Aerotech". मूल से 23 सितंबर 2015 को पुरालेखित. अभिगमन तिथि 22 जनवरी 2010.
  3. "Beryllium I-220H Grade 2". मूल से 21 फ़रवरी 2015 को पुरालेखित. अभिगमन तिथि 22 जनवरी 2010.
  4. "Aluminum 2014-T6". मूल से 21 फ़रवरी 2015 को पुरालेखित. अभिगमन तिथि 22 जनवरी 2010.
  5. Basalt Continuous Fibers, मूल से 29 दिसंबर 2009 को पुरालेखित, अभिगमन तिथि 2009-12-29.
  6. "Tensile and creep properties of ultra high molecular weight PE fibres" (PDF). मूल (PDF) से 28 जून 2007 को पुरालेखित. अभिगमन तिथि 22 जनवरी 2010.
  7. "Mechanical Properties Data". मूल से 3 मई 2007 को पुरालेखित. अभिगमन तिथि 22 जनवरी 2010.
  8. IOP.org Z. Wang, P. Ciselli and T. Peijs, Nanotechnology 18, 455709, 2007.
  9. Yu, Min-Feng; Lourie, O; Dyer, MJ; Moloni, K; Kelly, TF; Ruoff, RS (2000). "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load". Science. 287 (5453): 637–640. PMID 10649994. डीओआइ:10.1126/science.287.5453.637.
  10. "Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes" Archived (दिनांक अनुपस्थित) at the Portuguese Web Archive by F. Li, H. M. Cheng, S. Bai, G. Su, and M. S. Dresselhaus. DOI:10.1063/1.1324984
  11. K.Hata. "From Highly Efficient Impurity-Free CNT Synthesis to DWNT forests, CNTsolids and Super-Capacitors" (PDF). मूल (free download PDF) से 15 दिसंबर 2018 को पुरालेखित. अभिगमन तिथि 22 जनवरी 2010.
  12. Elices; एवं अन्य. "Finding Inspiration in Argiope Trifasciata Spider Silk Fibers". JOM. मूल से 15 जनवरी 2009 को पुरालेखित. अभिगमन तिथि 2009-01-23. Explicit use of et al. in: |last= (मदद)
  13. Blackledge; एवं अन्य. "Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus". The Company of Biologists. मूल से 1 फ़रवरी 2009 को पुरालेखित. अभिगमन तिथि 2009-01-23. Explicit use of et al. in: |last= (मदद)

इन्हें भी देखें

बाहरी कड़ियाँ