सामग्री पर जाएँ

टाँका

६०-४० सोल्डर का तार

टाँका या सोल्डर (Solder) एक गलनीय मिश्रधातु है। इसका उपयोग टाँका लगाने तथा धातु के टुकड़ों को जोड़ने के काम आती है।

विभिन्न प्रकार के सोल्डर

संरचनागलनांक °C
S/L
विषैलापनगलनक्रांतिकटिप्पणीSnPbAgCuSbBiInZnCdAuअन्य.















Sn50Zn49Cu1200/300[1]noGalvanite Lead free galvanizing solder formulation designed specifically for high quality repairs to galvanized Steel surfaces. Simple, effective and easy to use, in both manufacturing and field applications. Metallurgically bonds to the Steel, for a seamless protective barrier.[1]50149
Sn90Zn7Cu3200/222[2]noKapp Eco-Babbitt[2] Commonly used in capacitor manufacturing as protective coating to shield against electromotive force (EMF) and electromagnetic interference (EMI) with the specified performance of the capacitor, to prevent current and charge leakage out of and within the layers of the capacitor, and to prevent the development of electron flows within the coating material itself, that would dimminish capacitor performance, coating, and capacitor life.[2]9037
Pb90Sn10268/302[3] 275/302[4]PbnoSn10, UNS L54520, ASTM10B. Balls for CBGA components, replaced by Sn95.5Ag3.9Cu0.6.[5] Low cost and good bonding properties. Rapidly dissolves gold and silver, not recommended for those.[6] Used for fabrication of car radiators and fuel tanks, for coating and bonding of metals for moderate service temperatures. Body solder.[7] Has low thermal EMF, can be used as an alternative to Cd70 where parasitic thermocouple voltage has to be avoided.[8]1090
Pb88Sn12254/296[7]PbnoUsed for fabrication of car radiators and fuel tanks, for coating and bonding of metals for moderate service temperatures. Body solder. 1288
Pb85Sn15227/288[7]PbnoUsed for coating tubes and sheets and fabrication of car radiators. Body solder. 1585
Pb80Sn20183/280[4]PbnoSn20, UNS L54711. Used for coating radiator tubes for joining fins.[7]2080
Pb75Sn25183/266[3]PbnoCrude solder for construction plumbing works, flame-melted. Used for soldering car engine radiators. Used for machine, dip and hand soldering of plumbing fixtures and fittings. Superior body solder.[7]2575
Pb70Sn30185/255[3] 183/257[4]PbnoSn30, UNS L54280, crude solder for construction plumbing works, flame-melted, good for machine and torch soldering.[9] Used for soldering car engine radiators. Used for machine, dip and hand soldering of plumbing fixtures and fittings. Superior body solder.[7]3070
Pb68Sn32253Pbno"Plumber solder", for construction plumbing works[10]3268
Pb68Sn30Sb2185/243[4]PbnoPb6830682
Sn30Pb50Zn20177/288[11]PbnoKapp GalvRepair Economical solder for repairing & joining most metals including Aluminum and cast Iron. Have been the used for cast Iron and galvanized surface repair.[11]305020
Sn33Pb40Zn28230/275[11]PbnoEconomical solder for repairing & joining most metals including Aluminum and cast Iron. Have been the used for cast Iron and galvanized surface repair.[11]334028
Pb67Sn33187–230PbnoPM 33, crude solder for construction plumbing works, flame-melted, temperature depends on additives 3367
Pb65Sn35183/250[4]PbnoSn35. Used as a cheaper alternative of Sn60Pb40 for wiping and sweating joints.[7]3565
Pb60Sn40183/238[3] 183/247[4]PbnoSn40, UNS L54915. For soldering of brass and car radiators.[9] For bulk soldering, and where wider melting point range is desired. For joining cables. For wiping and joining lead pipes. For repairs of radiators and electrical systems.[7]4060
Pb55Sn45183/227[7]PbnoFor soldering radiator cores, roof seams, and for decorative joints. 4555
Sn50Pb50183/216[3] 183–212[4]PbnoSn50, UNS L55030. "Ordinary solder", for soldering of brass, electricity meters, gas meters, formerly also tin cans. General purpose, for standard tinning and sheetmetal work. Becomes brittle below −150 °C.[12][10] Low cost and good bonding properties. Rapidly dissolves gold and silver, not recommended for those.[6] For wiping and assembling plumbing joints for non-potable water.[7]5050
Sn50Pb48.5Cu1.5183/215[13]PbnoSavbit, Savbit 1, Sav1. Minimizes dissolution of copper. Originally designed to reduce erosion of the soldering iron tips. About 100 times slower erosion of copper than ordinary tin/lead alloys. Suitable for soldering thin copper platings and very thin copper wires.[14]5048.51.5
Sn60Pb40183/190[3] 183/188[4]PbnearSn60, ASTM60A, ASTM60B. Common in electronics, most popular leaded alloy for dipping. Low cost and good bonding properties. Used in both SMT and through-hole electronics. Rapidly dissolves gold and silver, not recommended for those.[6] Slightly cheaper than Sn63Pb37, often used instead for cost reasons as the melting point difference is insignificant in practice. On slow cooling gives slightly duller joints than Sn63Pb37.[14]6040
Sn60Pb38Cu2183/190[4][15]PbCu2. Copper content increases hardness of the alloy and inhibits dissolution of soldering iron tips and part leads in molten solder. 60382
Sn60Pb39Cu1Pbno60391
Sn62Pb38183Pbnear"Tinman's solder", used for tinplate fabrication work.[10]6238
Sn63Pb37183[16]PbyesSn63, ASTM63A, ASTM63B. Common in electronics; exceptional tinning and wetting properties, also good for stainless steel. One of most common solders. Low cost and good bonding properties. Used in both SMT and through-hole electronics. Rapidly dissolves gold and silver, not recommended for those.[6] Sn60Pb40 is slightly cheaper and is often used instead for cost reasons, as the melting point difference is insignificant in practice. On slow cooling gives slightly brighter joints than Sn60Pb40.[14]6337
Sn63Pb37P0.0015–0.04183[17]PbyesSn63PbP. A special alloy for HASL machines. Addition of phosphorus reduces oxidation. Unsuitable for wave soldering as it may form metal foam. 6337P
Sn62Pb37Cu1183[15]PbyesSimilar to Sn63Pb37. Copper content increases hardness of the alloy and inhibits dissolution of soldering iron tips and part leads in molten solder. 62371
Sn70Pb30183/193[3]PbnoSn707030
Sn90Pb10183/213[4]Pbnoformerly used for joints in food industry 9010
Sn95Pb5238Pbnoplumbing and heating 955
Pb92Sn5.5Ag2.5286/301[15]PbnoFor higher-temperature applications. 5.5922.5
Pb80Sn12Sb8PbnoUsed for soldering iron and steel[10]12808
Pb80Sn18Ag2252/260[4]PbnoUsed for soldering iron and steel[10]18802
Pb79Sn20Sb1184/270PbnoSb120791
Pb55Sn43.5Sb1.5PbnoGeneral purpose solder. Antimony content improves mechanical properties but causes brittleness when soldering cadmium, zinc, or galvanized metals.[10]43.5551.5
Sn43Pb43Bi14144/163[3]PbnoBi14. Good fatigue resistance combined with low melting point. Contains phases of tin and lead-bismuth.[18] Useful for step soldering. 434314
Sn46Pb46Bi8120/167[4]PbnoBi846468
Bi52Pb32Sn1696Pbyes?Bi52. Good fatigue resistance combined with low melting point. Reasonable shear strength and fatigue properties. Combination with lead-tin solder may dramatically lower melting point and lead to joint failure.[18]163252
Bi46Sn34Pb20100/105[4]PbnoBi46342046
Sn62Pb36Ag2179[3]PbyesSn62. Common in electronics. The strongest tin-lead solder. Appearance identical to Sn60Pb40 or Sn63Pb37. Crystals of Ag3Sn may be seen growing from the solder. Extended heat treatment leads to formation of crystals of binary alloys. Silver content decreases solubility of silver, making the alloy suitable for soldering silver-metallized surfaces, e.g. SMD capacitors and other silver-metallized ceramics.[12][14][18] Not recommended for gold.[6] General-purpose. 62362
Sn62.5Pb36Ag2.5179[3]Pbyes62.5362.5
Pb88Sn10Ag2268/290[3] 267/299[19]PbnoSn10, Pb88. Silver content reduces solubility of silver coatings in the solder. Not recommended for gold.[6] Forms a eutectic phase, not recommended for operation above 120 °C. 10882
Pb90Sn5Ag5292[3]Pbyes5905
Pb92.5Sn5Ag2.5287/296[3] 299/304[4]PbnoPb93. 592.52.5
Pb93.5Sn5Ag1.5296/301[3] 305/306[4]PbnoPb94, HMP alloy, HMP. Service temperatures up to 255 °C. Useful for step soldering. Also can be used for extremely low temperatures as it remains ductile down to −200 °C, while solders with more than 20% tin become brittle below −70 °C. Higher strength and better wetting than Pb95Sn5.[14]593.51.5
Pb95.5Sn2Ag2.5299/304[3]Pbno295.52.5
In97Ag3143[20]yesWettability and low-temperature malleability of indium, strength improved by addition of silver. Particularly good for cryogenic applications. Used for packaging of photonic devices. 397
In90Ag10143/237[21]noNearly as wettable and low-temperature malleable as indium. Large plastic range. Can solder silver, fired glass and ceramics. 1090
In75Pb25156/165[6]PbnoLess gold dissolution and more ductile than lead-tin alloys. Used for die attachment, general circuit assembly and packaging closures.[6]2575
In70Pb30160/174[3] 165/175[4][22]PbnoIn70. Suitable for gold, low gold-leaching. Good thermal fatigue properties. 3070
In60Pb40174/185[3] 173/181[4]PbnoIn60. Low gold-leaching. Good thermal fatigue properties. 4060
In50Pb50180/209[6] 178/210[4]PbnoIn50. Only one phase. Resoldering with lead-tin solder forms indium-tin and indium-lead phases and leads to formation of cracks between the phases, joint weakening and failure.[18] On gold surfaces gold-indium intermetallics tend to be formed, and the joint then fails in the gold-depleted zone and the gold-rich intermetallic.[23] Less gold dissolution and more ductile than lead-tin alloys.[6] Good thermal fatigue properties. 5050
In50Sn50118/125[24]noCerroseal 35. Fairly well wets glass, quartz and many ceramics. Malleable, can compensate some thermal expansion differences. Low vapor pressure. Used in low temperature physics as a glass-wetting solder.[25]5050
In70Sn15Pb9.6Cd5.4125[26]Pb,Cd159.6705.4
Pb75In25250/264[6] 240/260[27]PbnoIn25. Low gold-leaching. Good thermal fatigue properties. Used for die attachment of e.g. GaAs dies.[23] Used also for general circuit assembly and packaging closures. Less dissolution of gold and more ductile than tin-lead alloy.[6]7525
Sn70Pb18In12162[3]
154/167[28]
PbyesGeneral purpose. Good physical properties. 701812
Sn37.5Pb37.5In25134/181[6]PbnoGood wettability. Not recommended for gold.[6]37.537.525
Pb90In5Ag5290/310[3]Pbno9055
Pb92.5In5Ag2.5300/310[3]PbnoUNS L51510. Minimal leaching of gold, good thermal fatigue properties. Reducing atmosphere frequently used.. 92.52.55
Pb92.5In5Au2.5300/310[4]PbnoIn592.552.5
Pb94.5Ag5.5305/364[4] 304/343[29]PbnoAg5.5, UNS L5018094.55.5
Pb95Ag5305/364[30]Pbno955
Pb97.5Ag2.5303[3] 304[4] 304/579[31]Pbyes noAg2.5, UNS L50132. Used during World War II to conserve tin. Poor corrosion resistance; joints suffered corrosion in both atmospheric and underground conditions, all had to be replaced with Sn-Pb alloy joints.[32] Torch solder. 97.52.5
Sn97.5Pb1Ag1.5305PbyesImportant for hybrid circuits assembly.[12]97.511.5
Pb97.5Ag1.5Sn1309[3]PbyesAg1.5, ASTM1.5S. High melting point, used for commutators, armatures, and initial solder joints where remelting when working on nearby joints is undesirable.[9] Silver content reduces solubility of silver coatings in molten solder. Not recommended for gold.[6] Standard PbAgSn eutectic solder, wide use in semiconductor assembly. Reducing protective atmosphere (e.g. 12% hydrogen) often used. High creep resistance, for use at both elevated and cryogenic temperatures. 197.51.5
Pb54Sn45Ag1177–210Pbexceptional strength, silver gives it a bright long-lasting finish; ideal for stainless steel[9]45541
Pb96Ag4305Pbhigh-temperature joints[9]964
Pb96Sn2Ag2252/295[4]PbPb962962
Sn61Pb36Ag3Pb[12]61363
Sn56Pb39Ag5Pb[12]56395
Sn98Ag2[12]982
Sn65Ag25Sb10233yesVery high tensile strength. For die attachment. Very brittle. Old Motorola die attach solder. 652510
Sn96.5Ag3.0Cu0.5217/220 217/218[4][33]nearSAC305. It is the JEITA recommended alloy for wave and reflow soldering, with alternatives SnCu for wave and SnAg and SnZnBi for reflow soldering. Usable also for selective soldering and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn97Ag3 alloy. Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals. 96.530.5
Sn95.8Ag3.5Cu0.7217–218nearSN96C-Ag3.5 A commonly used alloy. Used for wave soldering. Usable also for selective soldering and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn96.5Ag3.5 alloy (designated e.g. SN96Ce). Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals. 95.83.50.7
Sn95.6Ag3.5Cu0.9217yesDetermined by NIST to be truly eutectic. 95.63.50.9
Sn95.5Ag3.8Cu0.7217[34]almostSN96C. Preferred by the European IDEALS consortium for reflow soldering. Usable also for selective soldering and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn96.2Ag3.8 alloy (designated e.g. SN96Ce). Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals. 95.53.80.7
Sn95.25Ag3.8Cu0.7Sb0.25Preferred by the European IDEALS consortium for wave soldering. 95.253.80.70.25
Sn95.5Ag3.9Cu0.6217[35]yesRecommended by the US NEMI consortium for reflow soldering. Used as balls for BGA/CSP and CBGA components, a replacement for Sn10Pb90. Solder paste for rework of BGA boards.[5] Alloy of choice for general SMT assembly. 95.53.90.6
Sn95.5Ag4Cu0.5217[36]yesLead Free, Cadmium Free formulation designed specifically to replace Lead solders in Copper and Stainless Steel plumbing, and in electrical and electronic applications.[37]95.540.5
Sn96.5Ag3.5221[3]yesSn96, Sn96.5, 96S. Fine lamellar structure of densely distributed Ag3Sn. Annealing at 125 °C coarsens the structure and softens the solder.[5] Creeps via dislocation climb as a result of lattice diffusion.[38] Used as wire for hand soldering rework; compatible with SnCu0.7, SnAg3Cu0.5, SnAg3.9Cu0.6, and similar alloys. Used as solder spheres for BGA/CSP components. Used for step soldering and die attachment in high power devices. Established history in the industry.[5] Widely used. Strong lead-free joints. Silver content minimizes solubility of silver coatings. Not recommended for gold.[6] Marginal wetting. Good for step soldering. Used for soldering stainless steel as it wets stainless steel better than other soft solders. Silver content does not suppress dissolution of silver metallizations.[14] High tin content allows absorbing significant amount of gold without embrittlement.[39]96.53.5
Sn96Ag4221–229noASTM96TS. "Silver-bearing solder". Food service equipment, refrigeration, heating, air conditioning, plumbing.[9] Widely used. Strong lead-free joints. Silver content minimizes solubility of silver coatings. Not recommended for gold.[6]964
Sn95Ag5221/254[40]noWidely used. Strong lead-free joints. Silver content minimizes solubility of silver coatings. Not recommended for gold. Produces strong and ductile joints on Copper and Stainless Steel. The resulting joints have high tolerance to vibration and stress, with tensile strengths to 30,000 psi on Stainless.[40]955
Sn94Ag6221/279[40]noProduces strong and ductile joints on Copper and Stainless Steel. The resulting joints have high tolerance to vibration and stress, with tensile strengths to 30,000 psi on Stainless.[40]946
Sn93Ag7221/302[40]noProduces strong and ductile joints on Copper and Stainless Steel. The resulting joints have high tolerance to vibration and stress, with tensile strengths to 31,000 psi on Stainless.[40] Audio industry standard for vehicle and home theater speaker installations. Its 7% Silver content requires a higher temperature range, but yields superior strength and vibration resistance.[41]937
Sn95Ag4Cu19541
Sn 232pureSn99. Good strength, non-dulling. Use in food processing equipment, wire tinning, and alloying.[9] Susceptible to tin pest. 99.99
Sn99.3Cu0.7227yesSn99Cu1. Also designated as Sn99Cu1. Cheap alternative for wave soldering, recommended by the US NEMI consortium. Coarse microstructure with ductile fractures. Sparsely distributed Cu6Sn5.[42] Forms large dendritic ß-tin crystals in a network of eutectic microstructure with finely dispersed Cu6Sn5. High melting point unfavorable for SMT use. Low strength, high ductility. Susceptible to tin pest.[38] Addition of small amount of nickel increases its fluidity; the highest increase occurs at 0.06% Ni. Such alloys are known as nickel modified or nickel stabilized.[43]99.30.7(Ni)
Sn99Cu0.7Ag0.3217/228[44]noSCA, SAC, or SnAgCu. Tin-silver-copper alloy. Relatively low-cost lead-free alloy for simple applications. Can be used for wave, selective and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn96.2Ag3.8 alloy (designated e.g. SN96Ce). Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals. 990.30.7
Sn97Cu3227/250[45] 232/332[7]For high-temperature uses. Allows removing insulation from an enameled wire and applying solder coating in a single operation. For radiator repairs, stained glass windows, and potable water plumbing. 973
Sn97Cu2.75Ag0.25228/314[7]High hardness, creep-resistant. For radiators, stained glass windows, and potable water plumbing. Excellent high-strength solder for radiator repairs. Wide range of patina and colors. 970.252.75
Zn100419pureFor soldering aluminium. Good wettability of aluminium, relatively good corrosion resistance.[46]100
Bi100271pureUsed as a non-superconducting solder in low-temperature physics. Does not wet metals well, forms a mechanically weak joint.[25]100
Sn91Zn9199[47]yesKappAloy9 Designed specifically for Aluminum-to-Aluminum and Aluminum-to-Copper soldering. It has good corrosion resistance and tensile strength. Lies between soft solder and silver brazing alloys, thereby avoiding damage to critical electronics and substrate deformation and segregation. Best solder for Aluminum wire to Copper busses or Copper wire to Aluminum busses or contacts.[47] UNS#: L91090 919
Sn85Zn15199/260[47]noKappAloy15 Designed specifically for Aluminum-to-Aluminum and Aluminum-to-Copper soldering. It has good corrosion resistance and tensile strength. Lies between soft solder and silver brazing alloys, thereby avoiding damage to critical electronics and substrate deformation and segregation. Has a wide plastic range this makes it ideal for hand soldering Aluminum plates and parts, allowing manipulation of the parts as the solder cools.[47]8515
Zn95Al5382yesFor soldering aluminium. Good wetting.[46]95Al5
Sn91.8Bi4.8Ag3.4211/213[48]noDo not use on lead-containing metallizations. U.S. Patent 5,439,639 (ICA Licensed Sandia Patent). 91.83.44.8
Sn70Zn30199/316[47]noKappAloy30 For soldering of aluminium. Good wetting. Used extensively in spray wire form for capacitors and other electronic parts. Higher temperature and higher tensile strength compared to 85Sn/15Zn and 91Sn/9Zn.[47]7030
Sn80Zn20199/288[47]noKappAloy20 For soldering of aluminium. Good wetting. Used extensively in spray wire form for capacitors and other electronic parts. Higher temperature and higher tensile strength compared to 85Sn/15Zn and 91Sn/9Zn.[47]8020
Sn60Zn40199/343[47]noKappAloy40 For soldering of aluminium. Good wetting. Used extensively in spray wire form for capacitors and other electronic parts. Higher temperature and higher tensile strength compared to 85Sn/15Zn and 91Sn/9Zn.[47]6040
Pb63Sn35Sb2185/243[4]PbnoSb235632
Pb63Sn34Zn3170/256PbnoPoor wetting of aluminium. Poor corrosion rating.[32]34633
Pb92Cd8310?Pb,Cd?For soldering aluminium. US patent 1,333,666.[49]928
Sn48Bi32Pb20140/160[15]PbnoFor low-temperature soldering of heat-sensitive parts, and for soldering in the vicinity of already soldered joints without their remelting. 482032
Sn89Zn8Bi3191–198Prone to corrosion and oxidation due to its zinc content. On copper surfaces forms a brittle Cu-Zn intermetallic layer, reducing the fatigue resistance of the joint; nickel plating of copper inhibits this.[50]8938
Sn83.6Zn7.6In8.8181/187[51]noHigh dross due to zinc. Covered by U.S. Patent #5,242,658. 83.68.87.6
Sn86.5Zn5.5In4.5Bi3.5174/186[52]noLead-free. Corrosion concerns and high drossing due to zinc content. 86.53.54.55.5
Sn86.9In10Ag3.1204/205[53]Potential use in flip-chip assembly, no issues with tin-indium eutectic phase. 86.93.110
Sn95Ag3.5Zn1Cu0.5221L[50]no953.50.51
Sn95Sb5235/240[3] 232/240[4]noSb5, ASTM95TA. The US plumbing industry standard. It displays good resistance to thermal fatigue and good shear strength. Forms coarse dendrites of tin-rich solid solution with SbSn intermetallic dispersed between. Very high room-temperature ductility. Creeps via viscous glide of dislocations by pipe diffusion. More creep-resistant than SnAg3.5. Antimony can be toxic. Used for sealing chip packagings, attaching I/O pins to ceramic substrates, and die attachment; a possible lower-temperature replacement of AuSn.[38] High strength and bright finish. Use in air conditioning, refrigeration, some food containers, and high-temperature applications.[9] Good wettability, good long-term shear strength at 100 °C. Suitable for potable water systems. Used for stained glass, plumbing, and radiator repairs. 955
Sn97Sb3232/238[54]no973
Sn99Sb1232/235[55]no991
Sn99Ag0.3Cu0.7990.30.7
Sn96.2Ag2.5Cu0.8Sb0.5217–225 217[4]Ag03A. Patented by AIM alliance. 96.22.50.80.5
Sn88In8.0Ag3.5Bi0.5197–208Patented by Matsushita/Panasonic. 883.50.58
Bi57Sn42Ag1137/139 139/140[56]Addition of silver improves mechanical strength. Established history of use. Good thermal fatigue performance. Patented by Motorola. 42157
Bi58Sn42138[3][6]yesBi58. Reasonable shear strength and fatigue properties. Combination with lead-tin solder may dramatically lower melting point and lead to joint failure.[18] Low-temperature eutectic solder with high strength.[6] Particularly strong, very brittle.[3] Used extensively in through-hole technology assemblies in IBM mainframe computers where low soldering temperature was required. Can be used as a coating of copper particles to facilitate their bonding under pressure/heat and creating a conductive metallurgical joint.[50] Sensitive to shear rate. Good for electronics. Used in thermoelectric applications. Good thermal fatigue performance.[57] Established history of use. Expands slightly on casting, then undergoes very low further shrinkage or expansion, unlike many other low-temperature alloys which continue changing dimensions for some hours after solidification.[25]4258
Bi58Pb42124/126[58]Pb4258
In80Pb15Ag5142/149[4]
149/154[59]
PbnoIn80. Compatible with gold, minimum gold-leaching. Resistant to thermal fatigue. Can be used in step soldering. 15580
Pb60In40195/225[4]PbnoIn40. Low gold-leaching. Good thermal fatigue properties. 6040
Pb70In30245/260[4]PbnoIn307030
Sn37.5Pb37.5In26134/181[4]PbnoIn2637.537.526
Sn54Pb26In20130/154[4] 140/152[60]PbnoIn20542620
Pb81In19270/280[4] 260/275[61]PbnoIn19. Low gold-leaching. Good thermal fatigue properties. 8119
In52Sn48118yesIn52. Suitable for the cases where low-temperature soldering is needed. Can be used for glass sealing.[50] Sharp melting point. Good wettability of glass, quartz, and many ceramics. Good low-temperature malleability, can compensate for different thermal expansion coefficients of joined materials. 4852
Sn52In48118/131[3]novery low tensile strength 5248
Sn58In42118/145[62]no5842
Sn51.2Pb30.6Cd18.2145[63]Pb,CdyesGeneral-purpose. Maintains creep strength well. Unsuitable for gold. 51.230.618.2
Sn77.2In20Ag2.8175/187[64]noSimilar mechanical properties with Sn63Pb37, Sn62Pb36Ag2 and Sn60Pb40, suitable lead-free replacement. Contains eutectic Sn-In phase with melting point at 118 °C, avoid use above 100 °C. 77.22.820
In74Cd26123[65]Cdyes7426
In61.7Bi30.8Cd7.562[66]Cdyes30.861.77.5
Bi47.5Pb25.4Sn12.6Cd9.5In557/65[67]Pb,Cdno12.625.447.559.5
Bi48Pb25.4Sn12.8Cd9.6In461/65[68]Pb,Cdno12.825.4489.6
Bi49Pb18Sn15In1858/69[69]Pbno15184918
Bi49Pb18Sn12In2158PbyesCerrolow 136. Slightly expands on cooling, later shows slight shrinkage in couple hours afterwards. Used as a solder in low-temperature physics.[25]12184921
Bi50.5Pb27.8Sn12.4Cd9.370/73[70]Pb,Cdno12.427.850.59.3
Bi50Pb26.7Sn13.3Cd1070Pb,CdyesCerrobend. Used in low-temperature physics as a solder.[25]13.326.75010
Bi44.7Pb22.6In19.1Cd5.3Sn8.347Cd,PbyesCerrolow 117. Used as a solder in low-temperature physics.[25]8.322.644.719.15.3
In60Sn40113/122[3]no4060
In51.0Bi32.5Sn16.560.5yesField's metal16.532.551
Bi49.5Pb27.3Sn13.1Cd10.170.9Pb,CdyesLipowitz Metal13.127.349.510.1
Bi50.0Pb25.0Sn12.5Cd12.571Pb,CdyesWood's metal, mostly used for casting. 12.5255012.5
Bi50.0Pb31.2Sn18.897PbnoNewton's metal18.831.250
Bi50Pb28Sn22109PbnoRose's metal. It was used to secure cast iron railings and balusters in pockets in stone bases and steps. Does not contract on cooling. 222850
Cd95Ag5338/393[71]CdnoKappTec General purpose solder that will join all solderable metals except Aluminum. High temperature, high strength solder. It is used in applications where alloys melting higher than soft solders are required, but the cost and strength of Silver-brazing alloys is not necessary.[71]595
Cd82.5Zn17.5265[72]CdyesMedium temperature alloy that provide strong, corrosion-resistant joints on most metals.[72] Also for soldering aluminium and die-cast zinc alloys.[10] Used in cryogenic physics for ataching electrical potential leads to specimens of metals, as this alloy does not become superconductive at liquid helium temperatures.[25]17.582.5
Cd70Zn30265/300[72]CdnoMedium temperature alloy that provide strong, corrosion-resistant joints on most metals. Works especially well on Aluminum-to-Aluminum and Aluminum-to-Copper joints, with excellent corrosion resistance and superior strength in high vibration and high stress applications in electronics, lighting and electrical products.[72]3070
Cd60Zn40265/316[72]CdnoMedium temperature alloy that provide strong, corrosion-resistant joints on most metals. Works especially well on Aluminum-to-Aluminum and Aluminum-to-Copper joints, with excellent corrosion resistance and superior strength in high vibration and high stress applications in electronics, lighting and electrical products.[72]4060
Cd78Zn17Ag5249/316[73]CdnoKappTecZ High temperature, high strength solder that may be used on most metals, but works extremely well on Aluminum, Copper and Stainless Steel. It has a high tolerance to vibration and stress, and good elongation for use on dissimilar metals. Above its liquidus of 600°F, this solder is extremely fluid and will penetrate the closest joints.[73]51778
Sn40Zn27Cd33176/260[74]CdnoKappRad[74] Developed specifically to join and repair Aluminum and Aluminum/Copper radiators and heat exchangers. A lower melting point makes delicate repair work easier.[74]402733
Zn90Cd10265/399CdFor soldering aluminium. Good wetting.[46]9010
Zn60Cd40265/335CdFor soldering aluminium. Very good wetting.[46]6040
Cd70Sn30140/160[4]CdnoCd70, thermal-free solder. Produces low thermal EMF joints in copper, does not form parasitic thermocouples. Used in low-temperature physics.[25]29.5670.44
Sn50Pb32Cd18145[4]Cd,PbCd18503218
Sn40Pb42Cd18145[75]Cd,PbLow melting temperature allows repairing pewter and zinc objects, including die-cast toys. 404218
Zn70Sn30199/376noFor soldering aluminium. Excellent wetting.[32] Good strength. 3070
Zn60Sn40199/341noFor soldering aluminium. Good wetting.[46]4060
Zn95Sn5382yes?For soldering aluminium. Excellent wetting.[32]595
Sn90Au10217[76]yes9010
Au80Sn20280yesAu80. Good wetting, high strength, low creep, high corrosion resistance, high thermal conductivity, high surface tension, zero wetting angle. Suitable for step soldering. The original flux-less alloy, does not need flux. Used for die attachment and attachment of metal lids to semiconductor packages, e.g. kovar lids to ceramic chip carriers. Coefficient of expansion matching many common materials. Due to zero wetting angle requires pressure to form a void-free joint. Alloy of choice for joining gold-plated and gold-alloy plated surfaces. As some gold dissolves from the surfaces during soldering and moves the composition to non-eutectic state (1% increase of Au content can increase melting point by 30 °C), subsequent desoldering requires higher temperature.[77] Forms a mixture of two brittle intermetallic phases, AuSn and Au5Sn.[78] Brittle. Proper wetting achieved usually by using nickel surfaces with gold layer on top on both sides of the joint. Comprehensively tested through military standard environmental conditioning. Good long-term electrical performance, history of reliability.[23] Low vapor pressure, suitable for vacuum work. Generally used in applications that require a melting temperature over 150°C.[79] Good ductility. Also classified as a braze. 2080
Au98Si2370/800[4]Au98. A non-eutectic alloy used for die attachment of silicon dies. Ultrasonic assistance is needed to scrub the chip surface so a eutectic (3.1% Si) is reached at reflow. 98Si2
Au96.8Si3.2370[4] 363[80]yesAu97.[77] AuSi3.2 is a eutectic with melting point of 363 °C. AuSi forms a meniscus at the edge of the chip, unlike AuSn, as AuSi reacts with the chip surface. Forms a composite material structure of submicron silicon plates in soft gold matrix. Tough, slow crack propagation.[42]96.8Si3.2
Au87.5Ge12.5361 356[4]yesAu88. Used for die attachment of some chips.[3] The high temperature may be detrimental to the chips and limits reworkability.[23]87.5Ge12.5
Au82In18451/485[4]noAu82. High-temperature, extremely hard, very stiff. 1882
In100157pureIn99. Used for die attachment of some chips. More suitable for soldering gold, dissolution rate of gold is 17 times slower than in tin-based solders and up to 20% of gold can be tolerated without significant embrittlement. Good performance at cryogenic temperatures.[81] Wets many surfaces incl. quartz, glass, and many ceramics. Deforms indefinitely under load. Does not become brittle even at low temperatures. Used as a solder in low-temperature physics, will bond to aluminium. Can be used for soldering to thin metal films or glass with an ultrasonic soldering iron.[25]99.99

इन्हें भी देखें

  1. "Galvanite". मूल से 12 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 23 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  2. "Kapp Eco Babbitt". मूल से 12 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 4 अप्रैल 2013. |firstlast= missing |lastlast= in first (मदद)
  3. सन्दर्भ त्रुटि: <ref> का गलत प्रयोग; emph नाम के संदर्भ में जानकारी नहीं है।
  4. "Alloy information" (PDF). मूल (PDF) से 19 जुलाई 2011 को पुरालेखित. अभिगमन तिथि 19 जुलाई 2011.
  5. Ganesan and Pecht p. 110
  6. Ray P. Prasad (1997). Surface mount technology: principles and practice. Springer. पृ॰ 385. आई॰ऍस॰बी॰ऍन॰ 0-412-12921-3.
  7. SOLDER ALLOYS Selection Chart Archived 2011-07-11 at the वेबैक मशीन. (PDF) . Retrieved on 2010-07-06.
  8. "संग्रहीत प्रति" (PDF). मूल (PDF) से 12 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  9. Madara Ogot, Gul Okudan-Kremer (2004). Engineering design: a practical guide. Trafford Publishing. पृ॰ 445. आई॰ऍस॰बी॰ऍन॰ 1-4120-3850-2.
  10. Kaushish (2008). Manufacturing Processes. PHI Learning Pvt. Ltd. पृ॰ 378. आई॰ऍस॰बी॰ऍन॰ 81-203-3352-7.
  11. "Kapp GalvRepair". Kapp Alloy & Wire, Inc. मूल से 12 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 23 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  12. Howard H. Manko (2001). Solders and soldering: materials, design, production, and analysis for reliable bonding. McGraw-Hill Professional. पृ॰ 164. आई॰ऍस॰बी॰ऍन॰ 0-07-134417-9.
  13. 3439-00-577-7594 Solder, Tin Alloy. Tpub.com. Retrieved on 2010-07-06.
  14. msl747.PDF Archived 2015-03-19 at the वेबैक मशीन. (PDF) . Retrieved on 2010-07-06.
  15. Pajky_vkladanylist_Cze_ang_2010.indd Archived 2014-09-28 at the वेबैक मशीन. (PDF) . Retrieved on 2010-07-06.
  16. "Balver Zinn Solder Sn63Pb37" (PDF). मूल (PDF) से 6 मार्च 2019 को पुरालेखित. अभिगमन तिथि 14 जून 2020.
  17. "Balver Zinn Solder Sn63PbP" (PDF). मूल (PDF) से 7 जुलाई 2011 को पुरालेखित. अभिगमन तिथि 7 जुलाई 2011.
  18. John H. Lau (1991). Solder joint reliability: theory and applications. Springer. पृ॰ 178. आई॰ऍस॰बी॰ऍन॰ 0-442-00260-2.[मृत कड़ियाँ]
  19. "Indalloy 228 Pb-Sn-Ag Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  20. "Indium Corp. Indalloy 290 In-Ag Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  21. "Indalloy 3 In-Ag Solder Alloy". मूल से 15 मई 2016 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  22. "Indalloy 204 In-Pb Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  23. Merrill L. Minges (1989). Electronic Materials Handbook: Packaging. ASM International. पृ॰ 758. आई॰ऍस॰बी॰ऍन॰ 0-87170-285-1.
  24. "Indalloy 1 Indium-Tin Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  25. Guy Kendall White; Philip J. Meeson (2002). Experimental techniques in low-temperature physics. Clarendon. पपृ॰ 207–. आई॰ऍस॰बी॰ऍन॰ 978-0-19-851428-2. अभिगमन तिथि 14 मई 2011.
  26. "Indalloy 13 Indium Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  27. "Indalloy 10 Pb-In Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  28. "Indalloy 9 Sn-Pb-In Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  29. "94.5Pb-5.5Ag Lead-Silver Solder, ASTM Class 5.5S; UNS L50180". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  30. "Indalloy 175 Lead Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  31. "97.5Pb-2.5Ag Lead-Silver Solder, ASTM Class 2.5S UNS L50132". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  32. Symposium on Solder. ASTM International. 1957. पृ॰ 114.
  33. "Balver Zinn Solder SN97C (SnAg3.0Cu0.5)" (PDF). मूल (PDF) से 24 दिसंबर 2012 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  34. "Balver Zinn Solder SN96C (SnAg3,8Cu0,7)" (PDF). मूल (PDF) से 7 जुलाई 2011 को पुरालेखित. अभिगमन तिथि 7 जुलाई 2011.
  35. "Indalloy 252 95.5Sn/3.9Ag/0.6Cu Lead-Free Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  36. "Indalloy 246 95.5Sn/4.0Ag/0.5Cu Lead-Free Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  37. "KappFree". Kapp Alloy & Wire, Inc. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 25 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  38. Karl J. Puttlitz, Kathleen A. Stalter (2004). Handbook of lead-free solder technology for microelectronic assemblies. CRC Press. पृ॰ 541. आई॰ऍस॰बी॰ऍन॰ 0-8247-4870-0.
  39. "Solder selection for photonic packaging" (PDF). मूल (PDF) से 3 अप्रैल 2007 को पुरालेखित. अभिगमन तिथि 3 अप्रैल 2007.
  40. "KappZapp". Kapp Alloy & Wire, Inc. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 25 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  41. "KappZapp7". SolderDirect.com. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 25 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  42. Ganesan and Pecht p. 404
  43. "The Fluidity of the Ni-Modified Sn-Cu Eutectic Lead Free Solder" (PDF). मूल (PDF) से 16 अक्तूबर 2006 को पुरालेखित. अभिगमन तिथि 16 अक्तूबर 2006.
  44. "Balver Zinn Solder SCA (SnCu0.7Ag0.3)" (PDF). मूल (PDF) से 7 जुलाई 2011 को पुरालेखित. अभिगमन तिथि 7 जुलाई 2011.
  45. "Balver Zinn Solder Sn97Cu3" (PDF). मूल (PDF) से 7 जुलाई 2011 को पुरालेखित. अभिगमन तिथि 7 जुलाई 2011.
  46. Howard H. Manko (8 फ़रवरी 2001). Solders and soldering: materials, design, production, and analysis for reliable bonding. McGraw-Hill Professional. पपृ॰ 396–. आई॰ऍस॰बी॰ऍन॰ 978-0-07-134417-3. मूल से 23 नवंबर 2018 को पुरालेखित. अभिगमन तिथि 17 अप्रैल 2011.
  47. "KappAloy". Kapp Alloy & Wire, Inc. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 23 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  48. "Indalloy 249 91.8Sn/3.4Ag/4.8Bi Lead-Free Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  49. Composition And Physical Properties Of Alloys Archived 2012-04-26 at the वेबैक मशीन. Csudh.edu (2007-08-18). Retrieved on 2010-07-06.
  50. Karl J. Puttlitz, Kathleen A. Stalter (2004). Handbook of lead-free solder technology for microelectronic assemblies. CRC Press. आई॰ऍस॰बी॰ऍन॰ 0-8247-4870-0.
  51. "Indalloy 226 Tin Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  52. "Indalloy 231 Sn-Zn-In-Bi Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  53. "Indalloy 254 86.9Sn/10.0In/3.1Ag Lead-Free Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  54. "Indalloy 131 97Sn/3Sb Lead-Free Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  55. "Indalloy 129 99Sn/1Sb Lead-Free Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  56. "Indalloy 282 57Bi/42Sn/1Ag Lead-Free Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  57. "Indalloy 281 Bi-Sn Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  58. "Indalloy 67 Bismuth-Lead Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  59. "Indalloy 2 In-Pb-Ag Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  60. "Indalloy 532 Tin Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  61. "Indalloy 150 Pb-In Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  62. "Indalloy 87 Indium-Tin Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  63. "Indalloy 181 Sn-Pb-Cd Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  64. "Indalloy 227 Sn-In-Ag Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  65. "Indalloy 253 Indium Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  66. "Indalloy 18 Indium Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  67. "Indalloy 140 Bismuth Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  68. "Indalloy 147 Bismuth Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  69. "Indalloy 21 Bismuth Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  70. "Indalloy 22 Bismuth Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  71. "KappTec". Kapp Alloy & Wire, Inc. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 23 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  72. "Kapp Cad/Zinc". Kapp Alloy & Wire, Inc. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 23 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  73. "KappTecZ". Kapp Alloy & Wire, Inc. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 25 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  74. "KappRad". Kapp Alloy & Wire, Inc. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 25 अक्टूबर 2012. |firstlast= missing |lastlast= in first (मदद)
  75. Soft Solders Archived 2012-03-08 at the वेबैक मशीन. www.cupalloys.co.uk (2009-01-20). Retrieved on 2010-07-06.
  76. "Indalloy 238 Sn-Au Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  77. "Gold Tin – The Unique Eutectic Solder Alloy". मूल से 29 सितंबर 2011 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  78. "Chip Scale Review Magazine". Chipscalereview.com. 2004-04-20. मूल से 16 जुलाई 2013 को पुरालेखित. अभिगमन तिथि 2010-03-31.
  79. "Indalloy 182 Gold-Tin Solder Paste" (PDF). मूल (PDF) से 19 जुलाई 2011 को पुरालेखित. अभिगमन तिथि 19 जुलाई 2011.
  80. "Indalloy 184 Gold Solder Alloy". मूल से 19 अगस्त 2014 को पुरालेखित. अभिगमन तिथि 16 अगस्त 2014.
  81. T.Q. Collier (May–Jun 2008). "Choosing the best bumb for the buck". Advanced Packaging. 17 (4): 24. आइ॰एस॰एस॰एन॰ 1065-0555.